118,934 research outputs found

    Heterozygous deletion of both sclerostin (Sost) and connexin43 (Gja1) genes in mice is not sufficient to impair cortical bone modeling

    Get PDF
    Connexin43 (Cx43) is the main gap junction protein expressed in bone forming cells, where it modulates peak bone mass acquisition and cortical modeling. Genetic ablation of the Cx43 gene (Gja1) results in cortical expansion with accentuated periosteal bone formation associated with decreased expression of the Wnt inhibitor sclerostin. To determine whether sclerostin (Sost) down-regulation might contribute to periosteal expansion in Gja1 deficient bones, we took a gene interaction approach and crossed mice harboring germline null alleles for Gja1 or Sost to generate single Gja1+/-and Sost+/-and double Gja1+/-;Sost+/-heterozygous mice. In vivo μCT analysis of cortical bone at age 1 and 3 months confirmed increased thickness in Sost-/-mice, but revealed no cortical abnormalities in single Gja1+/-or Sost+/-mice. Double heterozygous Gja1+/-Sost+/-also showed no differences in mineral density, cortical thickness, width or geometry relative to wild type control mice. Likewise, 3-point bending measurement of bone strength revealed no significant differences between double Gja1+/-;Sost+/-or single heterozygous and wild type mice. Although these data do not exclude a contribution of reduced sclerostin in the cortical expansion seen in Gja1 deficient bones, they are not consistent with a strong genetic interaction between Sost and Gja1 dictating cortical modeling

    Analysis of locking self-taping bone screws for angularly stable plates

    Get PDF
    Paper focuses on biomechanics, specifically on locking cortical bone screws in angularly stable plates used for the treatment of bone fractures in the medical fields of traumatology and orthopaedics. During extraction of titanium-alloy implants, problems are encountered in an effort to loosen some locking bone screws from the locking holes of an angularly stable plate and the subsequent stripping of the internal hexagon of the screw head. The self-locking of the screw-plate threaded joint was verified by calculation and the effect of the angle of the thread on the head of the locking cortical bone screw on self-locking was evaluated. The magnitude of the torque, causing the stripping of the internal hexagon (the Inbus type head) of a locking cortical bone screw with a shank diameter of 3.5 mm from Ti6Al4 V titanium alloy to ISO 5832-3, was determined experimentally. Also, it was experimentally found that the rotation of the screwdriver end with a hexagonal tip inside the locking cortical bone screw head during stripping of the internal hexagon causes strain of the screw head perimeter and thereby an increase of thread friction. The effect of tightening torque on the possibility of loosening of the locking cortical bone screw from the locking hole of an angularly stable plate was assessed experimentally. From the evaluation of five alternative shapes of locking cortical bone screw heads in terms of the acting stress and generated strains, it follows that the best screw is the screw with the Torx type head, which demonstrates the lowest values of reduced stress and equivalent plastic strain. Based on experiments and simulations the authors recommend that all global producers of locking cortical bone screws for locking holes of angularly stable plates use the Torx type heads, and not heads of the Inbus type or the Square, PH, PZ types.Web of Science37462561

    Higher fracture prevalence and smaller bone size in patients with hEDS/HSD-a prospective cohort study

    No full text
    Increased fracture risk in patients with Ehlers-Danlos syndromes has been reported, but the reasons for it are incompletely understood. We aimed to investigate possible determinants of this increased risk and found that hEDS/HSD patients present with a cortical bone size deficit compared with control subjects, possibly related to lower mechanical loading. Introduction The Ehlers-Danlos syndromes (EDS) comprise a group of heritable connective tissue disorders caused by defects in the biosynthesis, secretion, and/or organization of fibrillar collagens which might impair bone strength. Our aim was to compare fracture prevalence, volumetric and areal bone mineral density (BMD), bone geometry, muscle size and the muscle-bone interaction, body composition and longitudinal changes therein between patients with hypermobile EDS (hEDS) or hypermobility spectrum disorder (HSD), and healthy control subjects. Methods Cross-sectional data comprised 39 female hEDS/HSD patients (age 41 +/- 11 years) and 43 age-matched controls. After 8 years, 27 hEDS/HSD and 17 control subjects were re-evaluated. Tibial trabecular and cortical volumetric BMD, bone mineral content (BMC), cortical bone geometry, and lower leg muscle cross-sectional area (CSA) were measured using pQCT. Body composition, areal BMD, and BMC were determined by DXA. Results At baseline, patients with hEDS/HSD presented with a smaller cortical bone area, smaller cortical thickness and muscle CSA, and a higher fracture prevalence than control subjects (all p < 0.05). No differences in areal or volumetric BMD were found. Longitudinally, muscle CSA decreased in both groups and muscle density decreased in the hEDS/HSD group (p < 0.001) whereas all bone parameters remained unchanged. Conclusion hEDS/HSD patients have a cortical bone size deficit compared with controls, possibly contributing to their increased fracture risk. They presented with decreased muscle CSA but normal bone/muscle area ratio, suggesting that this bone size deficit is likely secondary to decreased mechanical loading. Further, there were no arguments for accelerated bone loss in hEDS/HSD subjects

    Endocortical bone loss in osteoporosis: The role of bone surface availability

    Get PDF
    Age-related bone loss and postmenopausal osteoporosis are disorders of bone remodelling, in which less bone is reformed than resorbed. Yet, this dysregulation of bone remodelling does not occur equally in all bone regions. Loss of bone is more pronounced near and at the endocortex, leading to cortical wall thinning and medullary cavity expansion, a process sometimes referred to as "trabecularisation" or "cancellisation". Cortical wall thinning is of primary concern in osteoporosis due to the strong deterioration of bone mechanical properties that it is associated with. In this paper, we examine the possibility that the non-uniformity of microscopic bone surface availability could explain the non-uniformity of bone loss in osteoporosis. We use a computational model of bone remodelling in which microscopic bone surface availability influences bone turnover rate and simulate the evolution of the bone volume fraction profile across the midshaft of a long bone. We find that bone loss is accelerated near the endocortical wall where the specific surface is highest. Over time, this leads to a substantial reduction of cortical wall thickness from the endosteum. The associated expansion of the medullary cavity can be made to match experimentally observed cross-sectional data from the Melbourne Femur Collection. Finally, we calculate the redistribution of the mechanical stresses in this evolving bone structure and show that mechanical load becomes critically transferred to the periosteal cortical bone.Comment: 13 pages, 3 figures. V2: minor stylistic improvements in text/figures; more accurately referenced subsection "Internal mechanical stress distribution"; some improved remarks in the Discussion sectio

    Whole egg consumption and cortical bone in healthy children

    Get PDF
    Eggs contain bioactive compounds thought to benefit pediatric bone. This cross-sectional study shows a positive link between childhood egg intake and radius cortical bone. If randomized trials confirm our findings, incorporating eggs into children's diets could have a significant impact in preventing childhood fractures and reducing the risk of osteoporosis. INTRODUCTION: This study examined the relationships between egg consumption and cortical bone in children. METHODS: The cross-sectional study design included 294 9-13-year-old black and white males and females. Three-day diet records determined daily egg consumption. Peripheral quantitative computed tomography measured radius and tibia cortical bone. Body composition and biomarkers of bone turnover were assessed using dual-energy X-ray absorptiometry and ELISA, respectively. RESULTS: Egg intake was positively correlated with radius and tibia cortical bone mineral content (Ct.BMC), total bone area, cortical area, cortical thickness, periosteal circumference, and polar strength strain index in unadjusted models (r = 0.144-0.224, all P < 0.050). After adjusting for differences in race, sex, maturation, fat-free soft tissue mass (FFST), and protein intakes, tibia relationships were nullified; however, egg intake remained positively correlated with radius Ct.BMC (r = 0.138, P = 0.031). Egg intake positively correlated with total body bone mineral density, BMC, and bone area in the unadjusted models only (r = 0.119-0.224; all P < 0.050). After adjusting for covariates, egg intake was a positive predictor of radius FFST (β = 0.113, P < 0.050) and FFST was a positive predictor of Ct.BMC (β = 0.556, P < 0.050) in path analyses. There was a direct influence of egg on radius Ct.BMC (β = 0.099, P = 0.035), even after adjusting for the mediator, FFST (β = 0.137, P = 0.020). Egg intake was positively correlated with osteocalcin in both the unadjusted (P = 0.005) and adjusted (P = 0.049) models. CONCLUSION: If the positive influence of eggs on Ct.BMC observed in this study is confirmed through future randomized controlled trials, whole eggs may represent a viable strategy to promote pediatric bone development and prevent fractures

    Predicting cortical bone adaptation to axial loading in the mouse tibia

    Get PDF
    The development of predictive mathematical models can contribute to a deeper understanding of the specific stages of bone mechanobiology and the process by which bone adapts to mechanical forces. The objective of this work was to predict, with spatial accuracy, cortical bone adaptation to mechanical load, in order to better understand the mechanical cues that might be driving adaptation. The axial tibial loading model was used to trigger cortical bone adaptation in C57BL/6 mice and provide relevant biological and biomechanical information. A method for mapping cortical thickness in the mouse tibia diaphysis was developed, allowing for a thorough spatial description of where bone adaptation occurs. Poroelastic finite-element (FE) models were used to determine the structural response of the tibia upon axial loading and interstitial fluid velocity as the mechanical stimulus. FE models were coupled with mechanobiological governing equations, which accounted for non-static loads and assumed that bone responds instantly to local mechanical cues in an on–off manner. The presented formulation was able to simulate the areas of adaptation and accurately reproduce the distributions of cortical thickening observed in the experimental data with a statistically significant positive correlation (Kendall's τ rank coefficient τ = 0.51, p < 0.001). This work demonstrates that computational models can spatially predict cortical bone mechanoadaptation to a time variant stimulus. Such models could be used in the design of more efficient loading protocols and drug therapies that target the relevant physiological mechanisms

    Prolonging disuse in aged mice amplifies cortical but not trabecular bones’ response to mechanical loading

    Get PDF
    Objective: Short-term neurectomy-induced disuse (SN) has been shown to restore load responses in aged mice. We examined whether this restoration was further enhanced in both cortical and trabecular bone by simply extending the SN. Methods: Following load: strain calibration, tibiae in female C57BL/J6 mice at 8, 14 and 20 weeks and 18 months (n=8/group) were loaded and bone changes measured. Effects of long-term SN examined in twenty-six 18 months-old mice, neurectomised for 5 or 100 days with/without subsequent loading. Cortical and trabecular responses were measured histomorphometrically or by micro-computed tomography. Results: Loading increased new cortical bone formation, elevating cross-sectional area in 8, 14 and 20 week-old (p <0.05), but not 18 month-old aged mice. Histomorphometry showed that short-term SN reinstated load-responses in aged mice, with significant 33% and 117% increases in bone accrual at 47% and 37%, but not 27% of tibia length. Cortical responses to loading was heightened and widespread, now evident at all locations, following prolonged SN (108, 167 and 98% at 47, 37 and 27% of tibial length, respectively). In contrast, loading failed to modify trabecular bone mass or architecture. Conclusions: Mechanoadaptation become deficient with ageing and prolonging disuse amplifies this response in cortical but not trabecular bone

    3D Micron-scale Imaging of the Cortical Bone Canal Network in Human Osteogenesis Imperfecta (OI)

    Get PDF
    Osteogenesis imperfecta (OI) is a genetic disorder leading to increased bone fragility. Recent work has shown that the hierarchical structure of bone plays an important role in determining its mechanical properties and resistance to fracture. The current study represents one of the first attempts to characterize the 3D structure and composition of cortical bone in OI at the micron-scale. A total of 26 pediatric bone fragments from 18 individuals were collected during autopsy (Nc=5) or routing orthopaedic procedures (NOI=13) and imaged by microtomography with a synchrotron light source (SRµCT) for several microstructural parameters including cortical porosity (Ca.V/TV), canal surface to tissue volume (Ca.S/TV), canal diameter (Ca.Dm), canal separation (Ca.Sp), canal connectivity density (Ca.ConnD), and volumetric tissue mineral density (TMD). Results indicated significant differences in all imaging parameters between pediatric controls and OI tissue, with OI bone showing drastically increased cortical porosity, canal diameter, and connectivity. Preliminary mechanical testing revealed a possible link between cortical porosity and strength. Together these results suggest that the pore network in OI contributes greatly to its reduced mechanical properties

    Local origins impart conserved bone type-related differences in human osteoblast behaviour

    Get PDF
    Osteogenic behaviour of osteoblasts from trabecular, cortical and subchondral bone were examined to determine any bone type-selective differences in samples from both osteoarthritic (OA) and osteoporotic (OP) patients. Cell growth, differentiation; alkaline phosphatase (TNAP) mRNA and activity, Runt-related transcription factor-2 (RUNX2), SP7-transcription factor (SP7), bone sialoprotein-II (BSP-II), osteocalcin/bone gamma-carboxyglutamate (BGLAP), osteoprotegerin (OPG, TNFRSF11B), receptor activator of nuclear factor-κβ ligand (RANKL, TNFSF11) mRNA levels and proangiogenic vascular endothelial growth factor-A (VEGF-A) mRNA and protein release were assessed in osteoblasts from paired humeral head samples from age-matched, human OA/OP (n = 5/4) patients. Initial outgrowth and increase in cell number were significantly faster (p < 0.01) in subchondral and cortical than trabecular osteoblasts, in OA and OP, and this bone type-related differences were conserved despite consistently faster growth in OA. RUNX2/SP7 levels and TNAP mRNA and protein activity were, however, greater in trabecular than subchondral and cortical osteoblasts in OA and OP. BSP-II levels were significantly greater in trabecular and lowest in cortical osteoblasts in both OA and OP. In contrast, BGLAP levels showed divergent bone type-selective behaviour; highest in osteoblasts from subchondral origins in OA and trabecular origins in OP. We found virtually identical bone type-related differences, however, in TNFRSF11B:TNFSF11 in OA and OP, consistent with greater potential for paracrine effects on osteoclasts in trabecular osteoblasts. Subchondral osteoblasts (OA) exhibited highest VEGF-A mRNA levels and release. Our data indicate that human osteoblasts in trabecular, subchondral and cortical bone have inherent, programmed diversity, with specific bone type-related differences in growth, differentiation and pro-angiogenic potential in vitro
    • …
    corecore